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Elementary Proof of the CLT 
Sketch 

L. Brown,   5/24/12  rev 11/15/12 
 

 I first presented a version of this proof in math 470 at Cornell University in the late 60s. 
I’ve occasionally presented versions in probability courses since then. The most recently that I 
can remember doing this is the last time I taught stat 430 here at UPenn, which was about 10 
years ago. The following is a very condensed account, but with added material in 4, below, and 
with minor improvements to other parts of the argument. It is meant as a reminder of the ideas 
rather than a full classroom presentation. I have transcribed this material now at the urging of G. 
Dumais who heard of it via George Casella who was my treasured friend and colleague over 
decades together at Rutgers and Cornell. 
 
  Let X denote a random variable with mean and variance ( ) ( )2,X Xµ σ , resp. Write 

  X !!  if X satisfies the CLT; i.e., for iid copies 1,.., nX X  
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As a convention, if X is a constant then also write   X !! . 
 
1. If   X !!  so is aX b+ . 
 
2. If X, Y are indep normal variables then   X +Y !! . 
 
3. If    X ,Y !!  and X, Y are indep then   X +Y !! . 
 Proof: Rearrange sums and use 2.|| 
 
4. ( )Bern 1 2B =  satisfies   B !! .  
 Proof: This is the simplest Bernoulli CLT. It can be proved using Stirling’s formula. See 
e.g., Feller, v.1.||  
 Note: With some extra computations one can also use Stirling’s formula to prove that 
  B !!  for any Bernoulli B. But this isn’t needed at this stage.  
 Alternate Proof:  
 Step 1.  (CLT for the median of uniforms.) Let 1,.., nU U  be iid Unif[0,1] random 
variables. Assume n is an odd number (for convenience); modification of the argument for even 
n is straightforward. Let Mn denote their median. Let { }# : 1 2n iB i U= ≤ . Note that 

( )~ ,1 2nB Bin n .  
 We know (or can derive) that Mn has a beta distribution. What matters is that its density is 
of the form 
 [ ] ( )[ ]22( ) 1

n
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M nf m C m m= − . 

Let ( )1 2n nW M n= − . Then 
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This shows that the limiting distribution of nW  is ( )0,1 4N  since this has the form of a normal 

density with variance 1 4. [It follows that 1
2
22

n
n
C
n π− → .] 

 Step 2.  (Limiting distribution of the median is the same as that of Bin(n, ½).) 
 For this paragraph suppose 1 2nM >  and condition on nM . The conditional distribution 
of iU   given i nU M<  is uniform on ( )0, nM  with all such iU  being (conditionally) 

independent. We then have ( ) ( )1 2 1 2 ~ 2i i n n n nP U U M M M W n> < = − . There are [ ]2n  

values of iU  satisfying i nU M< . Hence 

(4.2) ( )~ Bin , 1 2
2 2n n n n
n nB M M⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤Δ − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

@ . 

It’s easily computed that ( ) ~n nE W nΔ  and also ( )var ~n nW nΔ . Invoking Chebyshev’s 
inequality yields 

 0 (in probability)n
nWn

Δ − → . 

 A similar argument holds when 1 2nM < . It follows that  

(4.3) [ ]2
0 (in probability)n

n
B n

W
n

−
− →  

and consequently [ ]( ) ( )2 0, 1 4nB n n N− →  in distribution, by (4.1). 

 This shows that   Bern 1 2( )!!  and hence completes a proof of the DeMoivre Central 
Limit Theorem. 
  
 
5. Let    X ,Y , B !! , all independent, with ( )BernB p= . Let ( )1W BX B Y= + − . Then 

  Z !! . 
Proof: Assume ( ) ( ) ( ) ( )0 1W p X p Yµ µ µ= = + − . Because of #1 there is no loss of generality. 

Let 
1

n

n iN B=∑ . Then (after some algebraic manipulation) 
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(5.1) 
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where 1 2 3, ,Z Z Z  are independent and ( )( )2
1[2] 0, [ ]Z N X Yσ: , ( ) ( )( )( )23 ~ 0,Z N X Yµ µ− . || 

 
6. If D is a discrete random variable of the form ( ) 2Kj jP D d k= = , 1,.., 2Kj J= ≤  then 

  D !! .  
 Proof: This can be established by induction on K, using 4, 5. (Note that in the above one 
can take 1jk ≡  and allow repeated values of jd .) || 

 In particular, this shows that    Bern p( )!!  whenever p is a dyadic rational (i.e., of the 

form 2Kp k=  for any k, K). 
 
7. (CLT for continuous r.v.s  -- i.e., if X is any continuous r.v. with finite mean and variance 
then   X !! .) 
 Proof: Partition the real line as 0 1 ... La a a−∞ = < < < =∞  with 2KL =  and with  

 ( )1 1j jP a X a L− < < = . 

Let ( )1j j jb E X a X a−= < < . Let LD denote the discrete r.v. with ( ) 1L
jP D b L= = . Then

( ) ( )X Dµ µ=  and in a natural fashion, 

 L LX D ε= +  
where ( ) 0Lµ ε = , ( )2 0Lσ ε →  as L→∞ . Of course, ,L LD ε  are generally not independent. 

[In modern terminology, I’ve created a “coupling” representation for X.]  
 Then,  
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Here ,L L
n nZ E  are not necessarily independent. It follows from 6 that ( )( )20,L L

nZ N Dσ→  in 

distribution as n→∞ . Also ( ) ( )2 2 0L L
nEσ σ ε= →  and ( ) ( )2 2LD Xσ σ→  as L→∞ . And, 

( ) 0L
nEµ = . 

 Now let 0α >  and write, 
(8.1) ( ) ( ) ( ) ( ) ( )L L L L L

n n n n nP Z c P E P T c P Z c P Eα α α α≤ − − ≥ ≤ ≤ ≤ ≤ + + ≤ − . 
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Then apply Chebyshev’s inequality to get that the left and right sides of (8.1) satisfy 

 
( ) ( ) ( ) ( )
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L L L L
n n n
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n n n
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P Z c P E P Z c

α α α σ ε α

α α α σ ε α

≤ − − ≥ ≥ ≤ − −

≤ + + ≤ − ≤ ≤ + +
. 

 Now let n→∞  and then L→∞  and then 0α →  to get the desired result that X ∈• . || 
 
 9. (Extension of CLT to all distributions having finite mean and variance.) 
 Let X be any variable with finite variance. Let 0ε > . Let ( )0,1Z N: , independent of X. 

Let W X Zε= + . Then,   W !!  by 8. Hence ( ) ( )1 2 1 2 2 2
1 1 0,n n

i in W n Z Nµ ε σ ε− −− + → +∑ ∑ . 

Letting n→∞  and then 0ε →  yields the desired result that   X !! , since 

( )1 2 2
1var 0n

in Zε ε− = →∑  as 0ε → . 

 
 


